Światłowody kapilarne



Pobieranie 21,19 Mb.
Strona5/53
Data24.02.2019
Rozmiar21,19 Mb.
1   2   3   4   5   6   7   8   9   ...   53

Rys.2. Fotografia przekrojów poprzecznych obszaru rdzenia podstawowych rodzajów SKF: a) OmniGuide; płaszcz optyczny stanowi cienka jasna warstwa złożona z kilku warstw o relatywnie niewielkim kontraście refrakcyjnym; warstwa ta jest cylindrycznym zwierciadłem Bragga; mówimy o jednowymiarowej periodyczności struktury ograniczającej falę świetlną, b) płaszcz optyczny wielowarstwowy, mówimy o dwuwymiarowej strukturze periodycznej ograniczającej falę świetlną; c) płaszcz optyczny trzywarstwowy (cobweb); celem jest uzyskanie jak najbardziej jednorodnych celek o jak najcieńszych podporach pomiędzy warstwami szkła; d) profil pierścieniowy z wewnętrznym płaszczem powietrznym; e) kapilara z rdzeniem włóknowym subwymiarowym (względem długości transmitowanej fali optycznej) na ściance.

LITERATURA
[1] Polymicro Technologies, Capillary Optical Fibers: [www.polymicro.com] (2008)

[2] R.Romaniuk, J,.Dorosz, Projektowanie i wytwarzanie światłowodów kapilarnych, Raport Techniczny, Grant PBZ-MIN-009/T11/2003 (2003-2007), Politechnika Warszawska, [www.ise.pw.edu.pl/~rrom/kapilary] (2007)

[3] G.J.Roshan, J.A.Harrington, Hollow plastic waveguides for sensor applications, Proc.SPIE, vol.4204, pp.230-237 (2001)

[4] F.T.Greyling, Basic fluid dynamics considerations in the drawing of optical fibers, Bell Syst. Tech. J., vol.55, pp.1011-1056 (1976)

[5] A.B.Sotsky, L.I.Sotskaya, Modes of capillary optical fibers, Optics Communications, vol.230, no. 1-3, pp.67-79 (2003)

[6] M.A.Olshanii, Yu.B.Ovchinnikov, V.S.Letokhov, Laser guiding of atoms in a hollow optical fiber, Opt. Commun, vol.98, pp.77-80 (1993)

[7] Hollow core optical fiber, United States Patent 20070165991 (2005)

[8] S.E.Barkou, J.Broeng, A.Bjarklev, Leakage-free guidance of light in hollow core optical fibers, Proc of CLEO, pp.318-319 (2000)

[9] In-Kaq Hwang, Yong-Hee Lee, K.Oh, D.N.Payne, Highly birefringent elliptical hollow optical fiber, Proc of CLEO, pp.250-251 (2004)

[10] V.Xue, G.Zhou, Y.Xiao, R.Yang, Analysis of dispersion properties in square hollow fiber, J.Lightwave Technol. vol.23, no,7, p.2239-2242 (2005)

[11] G.Zhou, Z.Hou, L.Hou, J.Liu, Hollow-core tapered coupler for large diameter hollow-core optical fibers, Chinese Optics Letters, vol.1, no.1, pp.15-17 (2003)

[12] S.Narita, Y.Matsuura, M.Miyagi, Tapered hollow waveguide for focusing infrared laser beams, Optics Letters, vol.32. no.8, pp.830-832 (2007)

[13] S.O.Konorov, A.B.Fedotov, A.M.Zheltikov, R.B.Miles, Phase-matched four-wave mixing and sensing of water molecules by coherent anti-Stokes Raman scattering in large-core-area hollow photonic-crystal fibers, JOSA B, vol.22, no.9, pp.2049-2053 (2005)

[14] S.O.Martelluci, A.N.Chester, A.G.Mignani, Optical sensors and microsystems – new concepts, materials, technologies, Chapter 20: Hollow core fiber guides as gas analysis cells for laser spectroscopy, Springer Verlag (2000)

[15] J.Hewlett, Hollow core cuts Raman threshold, Physics Web, 11 October 2002 [physicsweb.org]

[16] J.F. Giuliani, Optical fiber sensor for methane gas, US Patent 4708941 (1987)

[17] V.F.Zolin, M.A.Samokhina, Raman spectra in an optical fiber with a liquid core, Sov.Journ.on Quantum Electronics, Vol.7, no.7, pp.915-916 (1977)

[18] R.Altcorn, I.Koev, R.P.VanDuyne, M.Litorja, Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy, Applied Optics, vol.36, no.34, pp.8992-8998 (1997)

[19] T.R.Woliński, W.J.Bock, A.W.Domański, R.S.Dąbrowski, M.A.Karpierz, W.Konopka, T.Nasiłowski, J.Parka, M.W.Sierakowski, J.Wójcik, Liquid crystal optical fibers in hydrostatic pressure monitoring, Proc.SPIE, vol.3189, pp.86-89 (1997)

[20] T.R.Woliński, A.Szymańska, A.Domański, M.Karpierz, M.Roszko, M.Sierakowski, R.Dąbrowski, E.Nowinowski-Kruszelnicki, J.Wójcik, Polarimetric optical fibers with elliptical liquid-crystal core, Proc. Annual Mtg. LEOS, vol.2, pp.474-475 (2000)

[21] O.Young-Hoon, K.Min-Suk, S.Sang-Yung, S.Choi, K.Oh, In-line polarization controller that uses a hollow optical fiber filled with a liquid crystal, Optics Letters, vol.29, pp.2605-2607 (2004)

[22] Y.Lin, P.R.Herman, C.E.Valdivia, J.Li, Photonic bandgap structure of colloidal crystal self-assembled in hollow core optical fiber, Appl.Phys.Lett. vol.86, no.12, art.no.1211106 (2005)

[23] H.Ito, K.Sasaki, T.Nakata, W.Jhe, M.Ohtus, Optical potential for atom guidance in a cylindrical-core hollow fibre, Optics Communications, vol.115, pp.57-64 (1995)

[24] J.Yin, Y.Zhu, LP01-mode output beam from a micro-sized hollow optical fiber: A simple theoretical model and its applications in atom optics, Journ. Applied Physics, vol.85, pp.2473-2481 (1999)

[25] Y.Matsumura, S.Mohri, Y.Wei, M.Mitsunobu, Sealed hollow fibers for medical Er:YAG lasers, Proc.SPIE, vol.4204, pp.238-242 (2001)

[26] Mechanical stress and capillary fiber strength, Polymicro Technologies (2005)

[27] P.Kiiveri, A.Hokkonen, R.Kylmanen, K.Keinanen, S.Tammela, New capillary optical fiber structure for fluorescence sensors, Proc. SPIE, vol. 2695, pp.169-179 (1996)

[28] Y.Matsuura, J.A.Harrington, Hollow glass waveguides with three layer dielectric coating fabricated by chemical vapour deposition, J.Opt.Soc.Am, vol.14, 00.1255-1259 (1997)

[29] M.Hideki, Continuous particle self arrangement in a long micro-capillary, AIST Today, International Edition, vol.2, no.8, p.9 (2002)

[30] J.Bravo, I.R.Matias, I.D.Villar, J.M.Corres, F.J.Arregui, Nanofilms on hollow core fiber-based structures: an optical study, J.Lightwave Technol., vol.24, no.5, pp.2100-2105 (2006)

[31] T. Seydel, A. Madsen, M. Tolan, G. Grübel and W. Press, “Capillary waves in slow motion,” Phys. Rev. B vol.63, 073409 (2001)

[32] J.A.Harrington, Y.Matsumura, Review of hollow waveguide technology, Proc.SPIE, vol.2396, pp.4-14 (1995)

[33] J.A.Harrington, A review of IR transmitting hollow waveguides, Fiber and Integrated Optics, vol.19, pp.211-217 (2000)

[34] J.V.Badding, V.Copalan, P.J.A.Sazio, Building semiconductor structures in optical fiber, Photonics Spectra (August 2006)

[35] K.Matsumura, Y.Matsumura, J.A.Harrington, Evaluation of gold, silver and dielectric coated hollow glass waveguides, Opt.Eng., vol.35, pp.3418-3421 (1996)

[36] V.Neves, F.S.C.Fernandes, Modal characteristics of W-type and M-type dielectric profile fibres, Microwave and Optics Technology Letters, vol.22, pp.355-357 (1998)

[37] X.Wang, M.G.Littman, Laser cavity for generation of variable-radius rings of light, Optics Letters, vol.18, pp.767-768 (1993)

[38] A.L.Yarin, P.Gospodinov, V.I.Roussinov, Stability loss and sensitivity in hollow fiber drawing, Phys. Fluids, vol.6, pp.1454-1463 (1994)

[39] S.D.Sarboh, S.A.Milinkovich, D.L.J.Debeljkovich, Mathematical model of the glass capillary tube drawing process, Glass Technology, vol.39, pp.53-67 (1998)

[40] R.Romaniuk, J,Dorosz, Technology of soft-glass optical fiber capillaries, Proc.SPIE, vol.6347, pp.634710:1-8, (2006)

[41] W.Kaplan, H.Elderstig, C.Veider, A novel method of capillary tubes on quartz for chemical analysis applications, IEEE Workshop on MEMS, Proc. Pp.63-68 (1994)

[42] H.Hisamoto, Y.Nakashima, C.Kitamura, et al., Capillary-assembled microchip for universal integration of various chemical functions onto a single microchip device, Anal. Chem., vol.76, no.11, pp.3222-3228 (2004)

[43] D.N.Heiger, (edit.) High performance capillary electrophoresis, Hewlett-Packard GMBH, Waldbronn, Germany 1992;

[44] D.J.Harrison, K.Fluri, K.Seiler et al., Micromachining a miniaturized capillary electrophoresis-based chemical analysis system, Science, vol.13, pp.895-897, (1993)

[45] Merging of chemical reactants in capillary tubes, US Patent 6551839

[46] J.J.Pesek, M.T.Matyska, Silica capillaries: chemical derivatization, Encyclopedia of chromatography, Taylor&Francis, London (2005)

[47] T.Taha, Z.F.Cui, Hydrodynamics of slug flow inside capillaries, Chemical Engineering Science, Vol.59, No.6, pp.1181-1190, (2004)

[48] Lab-on-Capillary – A cost effective chemical and biochemical evaluation technique, Nanotechnology News, 22 October 2007 [www.paraytec.com]

[49] B.K.Keller, M.D.DeGrandpre, C.P.Palmer, Characterization of long pathlength capillary waveguides for evanescent chemical sensing applications, Proc. SPIE, vol.5585, pp.143-151 (2004)

[50] W.M.Doyle, Hollow optical conduits for vibrational spectroscopy, Handbook of Vibrational Spectroscopy, Axiom Analytical, Inc., Irvine CA, 2001; Technical Note AN-917;

[51] Horiba Jobin Yvon [www.jobinyvon.com]

[52] P.J.Roberts, F.Couny, H.Sabert, B.J.Mangan, D.P.Williams, L.Farr, M.W.Mason, A.Tomlinson, T.A.Birks, J.C.Knight, P.St.J.Russell, Ultimate low-loss hollow core photonic crystal fibres, Optics Express, 10 January 2005, vol.13, no.1, pp.236-244

[53] D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, K.W. Koch, “Surface modes and loss in air-core photonic bandgap fibers,” Proc. SPIE, vol. 5000, pp.161-174 (2003)

[54] Y.Matsumura, S. Mohri, Yi-Wei Shi, M. Miyagi, Sealed hollow fibers for medical Er:YAG lasers, Proc. SPIE, Vol. 4204 pp.238-242 (2001)

[55] D. G. Ouzounov, F. R. Ahmad , D. Muller ,N. Venkataraman, M. T. Gallagher , M. G. Thomas, J. Silcox, K. W. Koch, and A. L Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,” Science 301, 1702-1704 (2003).

[56] Aqueous fluid core waveguide, U.S.Patent No.5.507.447 (1996)

[57] Long capillary waveguide Raman cell, U.S.Patent No.5.604.587 (1996)

[58] Chemical sensing techniques employing liquid core optical fibers, U.S.Patent No.6.016.372 (1999)

[59] Liquid waveguide capillary cells, World Precision Instruments [www.wpiinc.com]

[60] M.Hayakawa, Capillary for optical fiber connectors and method of manufacturing the same, US Patent No 5615291 (1997)

[61] K.Inada, Optical fiber holding capillary tube, US Patent No 6322256 (2001)

[62] T.Lopez-Rios, F.Gay, R.A.Vazquez-Nava, A.Barbara, S.Pairis, Micro-structures made with a capillary, Revista Mexicana de Fisica, 50 (5) 515-517 (2004)

[63] Liquid light guides, Lumatec [www.lumatec.de]

[64] S.Y-Suzuki, K.Ishii, K.Awazu, Medical applications of free electron laser transmittance using hollow optical fiber, Proc. of 2004 FEL Conference, paper ThPos19, pp.692-694 [www.jacow.org]

[65] E. A. J. Marcatili, R. A. Schmetzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. vol.43 p.1783 (1964)

[66] R.Romaniuk, High power optical fiber capillaries, Proc SPIE, vol.6347, pp.634714-1-7 (2006)

[67] M.Skorobogatiy, S.A.Jakobs, S.G.Johnson, C.Anastasiou, B.Temelkuran, Heating of hollow photonic Bragg fibers from field propagation, coupling and bending, Journ. of Lightwave Technology, Vol.23, No.11 (2005)

[68] J. S. Sanghera, L. B. Shaw and I. D. Aggarwal, “Applications of chalcogenide glass optical fibres,” C. R. Chimie, vol.5, pp.873-883 (2002)

[69] O.Yimaz, M.Miyagi, Y.Matsuura, Bundled hollow optical fibers for transmission of high-peak-power Q-switched Nd:YAG lasere pulses, Appl.Opt, vol.45, pp.7174-7178 (2006)

[70] U.Kubo, Y.Hashishin, H.Nakano, H.Tanaka, Hollow light guide and optical fiber for UV laser transmission, Proc. SPIE vol.3199, pp.75-80, (1998)

[71] B.Tmelkuran, S.D.Hart, G.Benoit, J.D.Joannopoulos, Y.Fink, Wavelength scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission, Nature, vol.420, pp.650-643 (2002)

[72] Y.Matsuura, A.Miyagi, Hollow optical fibers for ultraviolet and vacuum ultraviolet light, IEEE Journ. Of Selected Topics in Quantum Electronics, vol.10, pp.1430-1434 (2004)

[73] Y.W.Shi, K.Ito, Y.Matsumura, Y.Miyagi, Low-loss pilot-beam delivery in hollow optical fiber for high-energy infrared laser light, Proc. SPIE, vol.5630, pp.122-129 (2005)

[74] L.Forbes, J.E.Geusic, Hollow core photonic bandgap optical fiber, US Patent no.6.829.421 (2004), no.6.950.585 (2005)

[75] K.Kuriki, O.Shapira, S.D.Hart, Y.Kuriki, J.F.Viens, M.Bayindir, J.D.Joannopoulos, Y.Fink, Hollow multilayer photonic bandgap fibers for NIR applications, Optics Express, Vol.12, No.8, pp.1510-1517 (2004)

[76] D. H.Bilderback, Review of capillary x-ray optics from the 2nd International Capillary Optics Meeting, X-Ray Spectrometry, Vol.32, pp.195-207 (2003)

[77] H.Wang, Simulation, measurements and image processing for capillary optical digital mammography, Pentagon Reports, No.A507093 (1999)

[78] D.J.Harris, C.M.Savage, Atomic gravitational cavities from hollow optical fibers, Phys.Rev. A51, pp.3967-3971 (1995)

[79] H.Ito, K.Sasaki, M.Ohtsu, W.Jhe, Evanescent-light guiding of atoms through hollow optical fiber for optically controlled atomic deposition, Appl.Phys.Lett. vol.70, No.19, pp.2496-2498 (1997)

[80] R.D.Gall, et al., Guiding of metastable helium atoms through hollow optical fibers, Technical Report, The Australian National University, Canberra (2004)

[81] R.Romaniuk, Atom guiding in single mode optical fiber capillary, Proc. SPIE, vol 6347, pp.634713:1-5 (2006)

[82] N.Baril, J.Badding, P.Savio, V.Gopalan, D.J.Won, T.Scheidemantel, C.Finlayson, A.Amezcua-Correa, B.Jackson, Microstructured optical fibers as new nanotemplates for high pressure CVD, MRS, paper 0988-QQ04-02

[83] L.Rindorf, P.E.Hoiby, J.B.Jensen, L.H.Pedersen, O.Bang, O.Geschke, Towards biochips using microstructured optical fiber sensors, Analytical and Bioanalytical Chemistry, Springer, Vol. 385, No.8, pp.1370-1375 (2006)

[84] O.Wolfbeis, Fiber-optic chemical sensors and biosensors, Analytical Chemistry, Vol.76, No.12, pp.3269-3284 (2004)

[85] Microfluidic system for chemical analysis, US Patent No 20060008382 (2006)

[86] N.P.Mahalik, S.E.Iyuke, B.H.Ahn, Principles of MEMS and MOEMS, Micromanufacturing and Nanotechnology, Springer (2006)

[87] C-M.Cheng, C-H Liu, “A Capillary System with Thermal-Bubble-Actuated 1×N Micro Fluidic Switches via Time-Sequence Power Control for Continuous Liquid Handling,” Journal of MicroElectroMechanical System, vol.15, no.2, pp. 296-307 (2006)

[88] T.L.Jamison, P.Kornreich, Ch.Yu, Novel intercore-cladding lithium niobate thin film MOEMS fiber sensor/modulator, Journ. Microlithography, Microfabrication, and Microsystems, vol.4, no.4 (2005)

[89] A.E.Guber, et al., Microfluidic lab-on-a-chip systems based on polymers – fabrication and application, Chemical Engineering Journal, vol.101, no.1-3, pp.447-453 (2004)

[90] J.Nillson, R.Paschotta, J.E.Caplen, D.C.Hanna, Yb3+-ring-doped fiber for high-energy pulse amplification, Optics Letters, vol.22, pp.1092-1094 (1997)

[91] P.Glas, M.Nauman, A.Schirrmacher, T.Pertsch, Neodymium-doped hollow optical fiber laser for applications in laser-guided atoms, Proc. CLEO, San Francisco, CA, paper CTh060, pp.428-429 (1998)

[92] J.Kim D.B.S.Soh, C.Codemard, S.Yoo, Y.Jeong, J,Nillson, J.K.Sahu, Yb:Al-doped depressed clad hollow optical fiber laser operating at 980nm, Proc. CLEO/IQEC, Pacific Rim, Tokyo, paper CTuI4-5, (July 2005)

[93] J.Kim, C.Codemard, J.Nillson, J.K.Sahu, Erbium-Ytterbium co-doped hollow optical fiber laser, Electronics Letters, vol.42, no.9, pp.515-517 (2006)

[94] J.Kim, P.Dupriez, D.B.S.Soh, J.Nillson, J.K.Sahu, Core area scaling of Nd:Al-doped silica depressed clad hollow optical fiber and Q-switeched laser operation at 0,9µm, vol.31, no.19, pp.2833-2835 (2006)

[95] J.S.Kim, Hollow optical fibers and W-type fibers for high power sources and suppression of the stimulated Raman scattering, Ph.D. thesis, Optoelectronics Research Centre, Uni. of Southampton (2006)

[96] F.Benabid, Hollow-core fiber traps photons to enable attosecond pulses, SPIE Newsroom, DOI: 10.1117/2.2200711.04

[97] F.Couny, F.Benabid, P.J.Roberts, P.S.Light, M.G.Raymer, Generation and photonic guidance of multi-octave optical frequency combs, Science, vol.318, no.5853, pp.118-1121 (2007)

[98] International Patent No.WO/2005/116614, S.E.Hobbs, Capillary multi-channel optical flow cell (2005)

[99] V.Matejec, M.Chomat, M.Hayer, I.Kasik, D.Berkova, F.Abdelmalek, N.Jaffrezic-Renault, Development of special optical fibers for evanescent wave chemical sensing, Czech. Journ of Physics, vol.49, no.5, pp.883-888 (2004)

[100] S.Tao, T.V.S.Sarma, Evanescent-wave optical Cr VI sensor with a flexible fused-silica capillary as a transducer, Optics Letters, vol.31, pp.1423-1425 (2006)

[101] E.JD’Sa, R.G.Steward, Liquid capillary waveguide application in absorbance spectroscopy, Limnology and Oceanography, vol.46, no.3, pp.742-745 (2001)

[102] F.Benito-Lopez, W.Verboom, et al., Optical fiber based on-line UV/Vis spectroscopic monitoring of chemical reaction kinetics under high pressure in a capillary microreactor, Chem.Commun., pp.2857-2859 (2005)

[103] S.M.Howdle, K.Stanley, V.K.Popov, V.N.Bagratashvili, Can high pressure Raman spectroscopy be simplified? A microscale optical-fiber capillary cell for the study of supercritical fluids, Appl. Spectroscopy, vol.48, pp.214-218 (1994)

[104] Suz-Kai Hsiung, Che-Hsin Lin, Gwo-Bin Lee, A mircofabricated electrophoresis chip with multiple buried optical fibers and microfocusing lens for multiwavelength detection, Electrophoresis, vol.26, no.6, pp.1122-1129 (2005)

[105] V.Gorfinkel, M.Gouzman, S.Luryi, Multi-capillary optical waveguides for DNS detection, US Patent no. 6.464.852 (1999)

[106] P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels, Opt. Lett. Vol.30, pp.1273-1275 (2005)

[107] M.Sumentsky, R.S.Windeler, Y.Dulashko, X.Fan, Optical liquid ring resonator sensor, Optics Express, vol.15, no.22, pp.14376-14381 (2007)

[108] V.Teboul, J.M.St-Arnaud, T.K.Bose, I.Gelinas, An optical capillary flow viscometer, Rev. Sci. Instrum. 66 (7), July 1995, pp.3985-3988;

[109] P.J.A.Sazio, A.Amezcua-Correa, et al., Microstructured optical fibers as high-pressure microfluidic reactors, Science, pp.1583-1586 (March 2006)

[110] Using capillary flows in MEMS devices [www.flow3d.com]

[111] T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080-4087 (2004),

[112] F. Benabid, G. Bouwmans, J.C. Knight, P. St. J. Russell, and F. Couny, “Ultra-high efficiency laser wavelength conversion in gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93 (12), 123903 (2004).

[113] K.Ertekin, I.Klimant, O.S.Wolfbeis, Characterization of a reservoir-type capillary optical microsensor for pCO2 measurements, Talanta, vol.59, no.2, pp.261-267 (2003)

[114] Che-Hsin Lin, Gwo-Bin Lee, Lung-Ming Fu, Shu-Hui Chen, Integrated optical fiber capillary electrophoresis microchips with novel spin-on-glass surface modification, Biosensors and Bioelectronics, vol.20, no.1, pp.83-90 (2004)

[115] D.Kieslinger, B.H.Weigh, Capillary waveguide optrodes for medical applications, Optical Review, vol.4, no.4, pp.85-88 (1997)

[116] D.Kisslinger, B.H.Weigh, Capillary waveguide optrodes for medical applications, Optical Review, vol.4, no.4, pp.85-88 (1997)

[117] J. Mrazek, V. Matejec, M. Hayer, J. Skokankova, I. Kasik, D. Berkova, F. Kostka, Capillary optical fibers modified by xerogel layers for chemical detection“, Proc.SPIE, vol. 6180, pp.618013.1-6 (2006)

[118] V.Kostal, M.Zeisbergerova, Z.Hrotekova, K.Slais, V.Kahle, Miniaturized liquid core waveguide based fluorimetric detection cell for capillary separation methods: application in CE of amino acids, Electrophoresis, vol.27, no.23, pp.4658-4665 (2006)

[119] D.J.Markos, K.H.Smith, T.E.Dimmic, L.Dickens, Bragg grating temperature sensor in photosensitive capillary waveguide, Optical Fiber Sensors Conference, Cancun Mexico, OSA, paper TuD2 (October 2006)

[120] R.Pastel, H.Lewandowski, M.Renn, Laser trapping of crystallites in hollow optical fibers, paper HP.93, DAMOP Conf, Santa Fe, New Mexico (May 1998)

[121] S.Choi, K.Oh, W.Shin, C.S.Park, U.C.Paek, K.J.Park, Y.C.Chung, Y.Kim, Y.G.Lee, Novel mode converters based on hollow optical fiber for gigabit LANcommunication, IEEE Photonics Technology Letters, vol.14, no.2. pp.248-250 (2002)

[122] S.Choi, T.J.Eom, J.Yu, B.H.Lee, K.Oh, Novell all-fiber bandpass filter based on hollow optical fiber, IEEE Photonics Technology Letters, vol.14, pp.1701-1703 (2002)

[123] S.Choi, K.Oh, A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber, Optics Communications, vol.221, pp.307-312 (2003)

[124] J.S.Kim, Hollow optical fibers and W-type fibers for high power sources and suppression of the stimulated Raman scattering, Optoelectronics Research Centre, Univ. of Southampton, Publ. no.3808 (2006)

[125] G. Statkiewicz, M. Szpulak, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, K. Poturaj, P. Mergo, "Birefringent holey fiber with triple defect", 6th International Conference on Transparent Optical Networks: ICTON 2004 Wrocław 4-8.07.2004;

[126] Department of Optical Fiber Technology, Maria Curie-Skłodowska University, http://www.umcs.lublin.pl/jednostki.php?id=323

[127] R.Romaniuk, Applications of capillary optical fibers, Proc. SPIE, vol. 6347, p.6347-1-9 (2006)

[128] Department of Optical Radiation, Białystok University of Technology, http://vela.pb.bialystok.pl/~kpo/

[129] PBZ-MIN-009/T11/2003, Optoelectronic components and modules for applications in medicine, industry, environment protection and military technology, Ministry of Science and Informatization, http://kbn.icm.edu.pl/finauki98/PBZ/lista_projektow_20031020.html

[130] M.Kujawinska, Optical metrology: from micromeasurements to multimedia, Proc. Symp. on Photonics Technologies for 7th Framework Program, Opera 2015, pp.55-64Wrocław 12-14 October 2006, Grant PBZ-MIN-009/T11/2003

[131] T.Woliński et al, Design and fabrication of optical fiber sensor modules for measuring of temperature, hydrostatic pressure and static strains, Grant PBZ-MIN-009/T11/2003 (2004-2006) http://www.if.pw.edu.pl/~opto/? Badania: Granty_i_projekty

[132] Technology Transfer Center, Warsaw University of Technology, www.ctt.pw.edu.pl

[133] Institute of Electronic Materials Technology, www.itme.edu.pl [ITME]

[134] R.Romaniuk, J.Dorosz, Wytwarzanie i charakteryzacja światłowodów kapilarnych (Fabrication and characterization of capillary optical fibers), Electronics and Telecommunications Quarterly, Polish Academy of Sciences, vol.3, no.4, pp.451-468 (2006)

[135] R.Romaniuk, J.Dorosz, Mechanical properties of hollow optical fibers, Proc.SPIE, vol.6347, pp.6347-11-1-5 (2006)

[136] M.Borecki, M.J.Korwin-Pawłowski, M.Bebłowska, Light transmission characteristics of silica capillaries, Proc.SPIE, vol. 6347, pp.6347-41-1-7 (2006)

[137] M.Borecki, M.L.Korwin-Pawłowski, M.Bebłowska, Capillaries as optical fibers in sensing device applications, Proc. Symp. On Photonic Technologies for 7th Framework Program, Opera 2015, pp.454-462, Wrocław 12-14 October 2006

[138] M. Borecki, M. L. Korwin-Pawlowski, M. Bebłowska, A. Jakubowski, Short capillary tubing as fiber optic sensor of viscosity of liquids, Proc. of SPIE, vol. 6585, 65851G1, (2007)

[139] M.Borecki, M.J.Korwin-Pawłowski, M.Bebłowska, P.Wrzosek, A proposition of multi-parameter photonic method for nano-liter samples examination of liquids with short section of optical capillaries, Proc. SPIE, vol. 6937, pp.6937-52-1-8 (2007)

[140] M.Borecki, M.L.Korwin-Pawłowski, M.Bebłowska, The working condition of a short section of optical capillary in multi-parameters heads for Lab-on-Fiber application, Proc. SPIE, vol.7124, Wilga 2008 Conference on Photonics and Web Engineering, pp.7124-0C, 6 pages, (2008)

[141] M. Borecki, M. L. Korwin-Pawlowski , P. Wrzosek, J. Szmidt, Capillaries as the components of photonic sensor micro-systems, Journal on Measurment Systems and Technology, IOP London, vol. 19, 065202, (2008),

[142] M.Borecki, M.Szmidt, M.Bebłowska, P.Wrzosek, Analiza możliwości identyfikacji stanów mleka z wykorzystaniem kapilar optycznych, XI Konferencja „Światłowody i ich Zastosowania”, Białowieża, 2008, nie publikowane

[143] M.Borecki, M.L.Korwin-Pawłowski, M.Bebłowska, A method of examination of liquids by neural network analysis of reflectometric and transmission time domain data from optical capillaries and fibers, IEEE Sensors Journal, vol.8, Issue 6, pp.1208-1214, 2008

[144] M.Borecki, M.Szmidt, M.Korwin-Pawłowski, M.Bebłowska, T.Niemiec, P.Wrzosek, A method of testing the quality of milk using optical capillaries, Photonics Letters of Poland, vol.1, no.1, (2008) submitted for publication

[145] P. Wrzosek, Mikrosystem optoelektroniczny do badania próbek o nanolitrowych objętościach z wykorzystaniem kapilar optycznych, Rozprawa Doktorska, Politechnika Warszawska, Wydział Elektroniki i Telekomunikacji, Oficyna Wydawnicza PW, Warszawa 2008; promotor prof.Jan Szmidt, 187 stron;
[146] P.Miluski, D.Dorosz, Measurement of refractive index using capillary waveguide, Proc. SPIE, vol.6347, pp.6347-42-1-6 (2006)

[147] P.Miluski, The temperature sensor based on capillary waveguide, Proc.SPIE, vol. 6937, pp.6937-55-1-4 (2007)

[148] P.Miluski, D.Dorosz, Analysis of LP-modes transmission through capillary waveguides, Proc.SPIE, vol. 7120, May 2008, Optical Fibers and Their Applications, 2008, pp.7120-06 (6 pages)

[149] P.Miluski, D.Dorosz, The 2D ray model of light transmission through double layer capillary waveguide, Proc.SPIE, vol. 7124, November 2008, Photonics Applications; pp.7124-0E (5 pages)

[150] I.Wyżkiewicz, N.Górniak, M.Jakubowska, Z.Brzózka, A.Dybko, Hybrid microstructure for capillary electrophoresis with micro-channel in photosensitive layer, Proc.SPIE, vol. 6937, pp. 6937-62-1-4 (2007)

[151] R.Romaniuk, Optical fiber capillaries in trunk telecommunications, Proc.SPIE, vol.6347, pp.6347-12-1-8 (2006)

[152] R.Romaniuk, High power optical fiber capillaries, Proc.SPIE, vol. 6347, pp.6347-14-1-7 (2006)

[153] A.Iwaniuk, J.Dorosz, Guiding of Rb atoms by capillary optical fibers, Proc. SPIE, vol.6937, pp.6937-59-1-7 (2007)

[154] D.Dorosz, Ring-core optical fibre doped with neodymium, Proc.SPIE, vol. 6347, pp.6347-43-1-7 (2006)

[155] T.R.Woliński, K.Szaniawska, K.Bondarczuk, P.Lesiak, A.W.Domański, R.Dąbrowski, E.Nowinowski-Kruszelnicki, J.Wójcik, Propagation properties of photonic crystal fibers filled with nematic liquid crystals, Opto-Electronics Review, vol.13, no.2, pp59-64 (2005)

[156] T.R.Wolinski, K.Szaniawska, S.Ertman, P.Lesiak, A.W.Domański, Photonic liquid crystal fibers: new emerging opportunities, Proc. Symp. On Photonics Technologies for 7th Framework Program, Wrocław, 12-14 Oct. 2006, pp.95-99

[157] T.R.Woliński, K.Szaniawska, S.Ertman, P.Lesiak, A.W.Domański, R.Dąbrowski, E.Nowinowski-Kruszelnicki, J.Wójcik, Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibers, Measurement Science and Technology, vol 17, pp.985-991 (2006)

[158] K.Szaniawska, T.Nasiłowski, T.R.Woliński, H.Thienpont, Tunable properties of light propagation in photonic liquid crystal fibres, Opto-Electronic Review, vol.14, no.4, pp.339-343 (2006)

[159] T.R.Wolinski, S.Ertman, P.Lesiak, A.W.Domanski, A.Czapla, R.Dabrowski, E.Nowinowski-Kruszelnicki, J.Wójcik , “Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics”, Opto-Electronics Reviev, vol.14, no.4, pp.329-334 (2006).

[160] K.A.Brzdąkiewicz, U.A.Laudyn, M.A.Karpierz, T.R.Woliński, J.Wójcik, Linear and nonlinear properties of photonic fibers filled with nematic liquid crystals, Opto-Electronics Review, vol.14, no.4, pp.287-292 (2006)

[161] Krajowa Konferencja Światłowody i ich Zastosowania”, PAN, I - Jabłonna, luty 1976, II – Jabłonna luty 1979, III- Jabłonna luty 1983,

[162] Łącki P., Nowakowski A., Dress P., Franke H., Liquid Core Waveguide as a Fluorescence Sensor, EUROSENSORS XII European Conference on Solid-State Transducers, Southampton s. 4, 1998

[163] Piotr Łącki, Badanie możliwości monitoringu środowiska poprzez pomiar fluorescencji w kapilarach i światłowodzie z ciekłym rdzeniem, Praca Doktorska, Politechnika Gdańska, Gdańsk, 2001

[164] R.Romaniuk, Two classes of capillary optical fibers: refractive and photonic, Proc.SPIE, vol. 7124, November 2008, Photonics Applications; pp.7124-0D (11 pages)

[165] R.Romaniuk, Guided modes in capillary optical fibers, Electronics and Telecommunications Quarterly, Polish Academy of Sciences, vol. 54, no.3, 2008, pp. 323-342;

[166] R.Romaniuk, Capillary optical fiber – design, fabrication characterization and application, Bulletin of the Polish Academy of Sciences, Technical Sciences, vol.56, no.2, 2008, pp.87-102

[167] B.K. Keller, M.D. DeGrandpre, C.P. Palmer, Waveguiding properties of fiber-optic capillaries for chemical sensing applications, Sensors and Actuators B, vol. 125, 360-371, (2007),

[168] A.Mendez, T.Morse, (eds.) Specialty Optical Fibers Handbook, Academic Press, New York, 2006

[169] J.Dorosz, Technologia światłowodów włóknistych, Polski Biul. Ceramiczny, 86, Kraków 2005

Rozdział 2

PROJEKTOWANIE ŚWIATŁOWODÓW KAPILARNYCH


Światłowody kapilarne, o różnych rozwiązaniach technicznych, stały się elementem funkcjonalnym w wielu zastosowaniach badawczych, biomedycznych i przemysłowych. Projektowanie SK przeznaczonego dla konkretnego zastosowania technicznego ma na celu optymalizację parametrów włókna optycznego i kapilary jednocześnie, ukierunkowane na to zastosowanie. Projektowanie SK, analogicznie do innych rodzajów światłowodów włóknowych, obejmuje trzy różne, ale powiązane ze sobą, zagadnienia: geometrię, refrakcję oraz strukturę modową. Wszystkie trzy grupy parametrów dotyczą SK, przy czym pierwsza grupa parametrów, oraz w niektórych wypadkach częściowo także druga, dotyczy klasycznej kapilary. Projekt optycznego elementu kapilarnego wypełniającego dwie zasadniczo odmienne funkcje jest zawsze kompromisem. Na przykład, jeśli kapilara chemiczna wymaga dużego otworu, co jest sprzeczne z wymogiem jednomodowości SK, itp. Innym przykładem wymogu takiego kompromisu jest, że kapilara chemiczna posiada standaryzowane konektory, które muszą być modyfikowane lub zmienione w przypadku połączenia roli chemicznej i optycznej w SK. W kapilarze chemiczno-optycznej, nazywanej tutaj skrótowo SK, zachowana musi być ciągłość drogi chemicznej (dla przepływu materii) i optycznej (dla przepływu fali).



1   2   3   4   5   6   7   8   9   ...   53


©operacji.org 2017
wyślij wiadomość

    Strona główna