Światłowody kapilarne



Pobieranie 21,19 Mb.
Strona17/53
Data24.02.2019
Rozmiar21,19 Mb.
1   ...   13   14   15   16   17   18   19   20   ...   53
Rys.1. Termiczna zależność lepkości µ(T) dla optycznych szkieł wieloskładnikowych, technicznych i stosowanych na światłowody instrumentacyjne [63]. Rodzaje szkieł: SLS sodowo-wapniowe; WS-izolacyjne; BS – borokrzemionka o małym współczynniku rozszerzalności liniowej, analogiczna do Duran i Pyrex; E – szkło typu E, borokrzemionka o małej zawartości alkaliów; P – panelowe, Q – czysta krzemionka, Pb – szkło ołowiowe wysokorefrakcyjne.

Masa jest także transportowana w poprzek, w przypadku zachodzących w menisku reakcji chemicznych lub dyfuzji jonów modyfikatorów w szkle. Ciepło transportowane jest wzdłuż systemu wyciągania razem z masą, a także konwekcyjnie i w poprzek menisku w obszarze jego intensywnego chłodzenia. Przepływ masy szkła w menisku światłowodowym jest jednorodny i warstwowy z powodu znacznej lepkości szkła w obszarze chłodzenia. Wskutek chłodzenia, w poprzek menisku i włókna, różnica temperatury zawiera się od 50oC do 100oC. Nawet tak niewielka różnica temperatur jest ważnym czynnikiem wpływającym na jakość i charakterystyki światłowodu. Rozpraszanie lepkościowe jest niewielkie, podczas standardowego procesu wyciągania światłowodu, ale może być znaczne dla procesów ekstruzji. Może być także znaczne w pewnej części menisku wypływowego tam, gdzie szkło wykazuje dużą lepkość.

Wskutek szybkich zmian temperatury wzdłuż układu wyciągania, rozpraszanie lepkościowe jest skoncentrowane w dolnym regionie menisku. W tym miejscu odgrywa istotną rolę w utrzymywaniu temperatury szkła powyżej standardowej wartości mięknięcia Ts. W punkcie Ts lepkość szkła wynosi w przybliżeniu 108 puazów, czyli jest znaczna, tego samego rzędu co przy ekstruzji światłowodów polimerowych. W tym zakresie lepkości, rzadko wykorzystywanym do wyciągania światłowodów, jedynie w przypadku gdy szkło ulega rekrystalizacji, po ogrzaniu do wyższej temperatury, gdzie rolę odgrywa zjawisko rozpraszania lepkiego, co oznacza sprzężenie pomiędzy równaniami energii i momentu pędu opisującymi proces tworzenia włókna. W wyższych obszarach menisku, w czasie standardowego procesu technologicznego, temperatury są wyższe i rozpraszanie lepkie nie zachodzi.

Numeryczne obliczenie kształtu powierzchni swobodnej menisku (od powierzchni tej zależy stabilność procesu wyciągania i jakość światłowodu) musi uwzględniać następujące czynniki i sprzężenia pomiędzy nimi: silna eksponencjalna zależność lepkości szkła od temperatury, zmiana lepkości szkła o kilka rzędów na niewielkiej odległości wewnątrz układu wyciągania, geometria układu wyciągania, swobodny przepływ powierzchniowy, sprzężony transport ciepła i materii, napięcie powierzchniowe, reakcje chemiczne i dyfuzja. W przypadku SK sytuacja jest jeszcze nieco bardziej skomplikowana bowiem istnieją dwie powierzchnie menisku: wewnętrzna i zewnętrzna. Warunki termiczne wewnątrz menisku są inne niż na zewnątrz. Poprzeczny przepływ ciepła występuje w kierunku na zewnątrz. Nawet niewielka, kilkustopniowa zmiana temperatury w pobliżu temperatury mięknięcia szkła Ts powoduje istotne zmiany lepkości i w konsekwencji zmienia warunki przepływu i kształt menisku wypływowego dla tworzonego włókna światłowodowego. Wartość Ts dla czystej i słabo domieszkowanej krzemionki na światłowody transmisyjne wynosi 1600oC a dla szkieł światłowodowych wieloskładnikowych jest w zakresie od 700oC do 1100oC. Na powierzchni swobodnej menisku pomiędzy szkłem i zabezpieczającą zewnętrzną atmosferą obojętną (najczęściej jest to suchy argon) zakłada się zerowe naprężenie ścinające. Jeśli jednak naprężenie ścinające wywierane przez płyn zewnętrzny jest znaczne, trzeba je wziąć pod uwagę. Swobodna powierzchnia zewnętrzna menisku wypływowego jest otrzymywana w wyniku równoważenia się wszystkich sił działających na tę powierzchnię. Kształt powierzchni menisku światłowodowego jest otrzymywany na drodze numerycznej poprzez założenie powierzchni wyjściowej i iteracyjne uwzględnianie działających w układzie sił. Kształt menisku i jego zmiany, dla danych warunków technologicznych procesu wyciągania światłowodu i ich zmian, może być fotografowany lub rejestrowany kamerą i porównywany z wynikami modelowania procesu technologicznego.

Wyciąganie światłowodów polimerowych odbywa się dla bardzo dużych wartości lepkości, 106 razy większej od lepkości wody i od kilkukrotnie do dziesięciokrotnie większych niż dla szkła. Wartość liczby Reynoldsa jest niewielka i możliwe jest zastosowanie do opisu procesu wyciągania przybliżenia przepływu pełzającego. Liczba Reynoldsa wynosi typowo dla ekstruzji światłowodów polimerowych Re<1,0 co pozwala na nieuwzględnianie przy wyciąganiu włókna czynnika inercyjnego. Wyciąganie światłowodów polimerowych wymaga uwzględnienia niewielkiej przewodności termicznej polimerów, co powoduje istnienie znacznych gradientów temperatur, poprzecznych i podłużnych w układzie wyciągania, znacznie większych niż dla szkieł. Wskutek dużej lepkości polimeru podczas wyciągania światłowodu, struktura tworzonego włókna jest warstwowa i nie zachodzi w ekstruzyjnym układzie technologicznym, zjawisko mieszania objętościowego materiału, lub zjawisko takie występuje, ale jest niewielkie. Jednocześnie, co jest następną konsekwencją wysokiej lepkości tworzywa, przy wyciąganiu światłowodu polimerowego, występuje silniejsze niż dla szkieł rozpraszanie lepkie powodujące konwersję energii mechanicznej przepływu w ciepło. Znaczna wartość funkcji rozpraszania lepkiego może prowadzić do lokalnego wzrostu temperatury w ekstruzyjnym menisku wypływowym światłowodu polimerowego. Rozpraszanie lepkie jest kwadratową funkcją pochodnych przestrzennych składowych prędkości przepływu i wyraża prędkość konwersji form energii na jednostkę objętości przepływu.


3.3 Rozwiązanie równań Naviera-Stokesa dla szklanego światłowodu kapilarnego

Zależność pomiędzy szybkością podawania preformy a prędkością wyciągania światłowodu wynika z zasady zachowania masy. Prędkość podawania preformy zależy od jej średnicy zewnętrznej i grubości ścianek, czyli od transportu masy do systemu, w którym następuje transformacja geometrii:

vp=df2vf/dp2 , (14)

gdzie vp-prędkość podawania preformy, vf-prędkość wyciągania światłowodu, dp-średnica zewnętrzna preformy, df-średnica zewnętrzna światłowodu. W rzeczywistych warunkach technologicznych różnica między stałymi czasowymi kontroli prędkości podawania preformy i prędkości wyciągania światłowodu wynosi jeden rząd wielkości. Oznacza to, że efektywna, szybka kontrola wynikowej średnicy włókna optycznego, co jest celem technologa, jest możliwa poprzez regulację szybkości wyciągania włókna. Szybkie sprzężenie zwrotne oddziaływujące na prędkość wyciągania włókna stabilizuje skutecznie jego średnicę. Wolna kontrola średnicy włókna, związana ze zmianą rodzaju wytwarzanego światłowodu w czasie jednego procesu, jest dokonywana poprzez zmianę prędkości podawania preformy. Wówczas, przejściowo, zachodzą warunki zmiany funkcyjnej:

vpdp2=fp(t), vfdf2=ff(t). (15)

Uzyskanie światłowodu wysokiej jakości jest związane, w każdym wypadku, ze stabilizacją obu prędkości - podawania preformy i wyciągania włókna, czyli ze stacjonarnością przepływu masy przez system:

vpdp2=vfdf2=const. (16)

Możliwe są w systemie także inne warunki np:

vpdp2 = Cp = const, vfdf2 = Cf = const. (17)

Wówczas wytwarzane włókno optyczne jest liniowo stożkowe. W zależności od relacji obu stałych, stożek jest zbieżny lub rozbieżny, o różnych szybkościach, a stąd kształtach, zbiegania. W przypadku preformy wielowarstwowej przepływ całkowity jest sumą przepływu warstw. Zakładając nie przesuwanie się warstw względem siebie w wysokiej temperaturze, dla warunku stacjonarnego spełniona jest zależność:

Σ(i)vpidpi2=Σ(i)vfidfi2. (18)

Warunek stacjonarny oznacza dokładne odwzorowanie struktury preformy w strukturę włókna optycznego. Równania zachowania masy w przepływie są zawsze spełnione. Nie opisują one jednak żadnych subtelnych zjawisk zachodzących w układzie wyciągania włókna optycznego.

W układzie wyciągania światłowodu obowiązują równania Naviera-Stokesa. Równania N-S opisują newtonowską zasadę zachowania pędu. Uzupełnione o równania zachowania masy, zachowania energii, warunki brzegowe (takie jak: brak poślizgu, obecność powierzchni kapilarnych) oraz równania stanu opisują w pełni układ hydrodynamiczny w warunkach zmiennej temperatury i lepkości przepływającej cieczy. Równania stanu są relacjami, obowiązującymi w danym układzie, pomiędzy wieloma zmiennymi stanu takimi jak: gęstość, energia, masa, ciśnienie, temperatura, objętość, lepkość, itp. Równania stanu bilansują liczbę niewiadomych w układzie z liczbą równań opisujących układ. Dla układu wyciągania światłowodu znamy kilka równań stanu, np. zależność lepkości od temperatury dla zastosowanych szkieł, równania dyfuzji (transfer masy pomiędzy warstwami) jonów modyfikatorów w szkle, równania termiczne chłodzenia menisku wypływowego, itp. W układzie wyciągania włókna optycznego zakładamy zawsze przepływ laminarny ze względu na znaczne lepkości topionego szkła.

Założenie dotyczące braku poślizgu oznacza, że na ściankach dysz tyglowych oraz na granicy tworzenia menisku wypływowego z preformy prędkość (przyległej części warstwy przyściennej) szkła jest zerowa. Równanie poślizgu w cieczy lepkiej (tutaj dla wypływu szkła z dyszy tyglowej) ma postać:

v(r)-vs=pdv/dr, (19)

gdzie v(r) - profil prędkości, vs - prędkość warstwy przyściennej tuż przy ściance dyszy, p - długość poślizgu, r-współrzędna radialna względem ścianki dyszy. Założenie dotyczące poślizgu między warstwami szkła dotyczy w szczególności tych miejsc, gdzie spotykają się dwa różne szkła, jedno wypływające z wewnętrznego tygla, opuszczające dyszę i wpływające do innego szkła. Dotyczy także przepływu szkła w rurkowej dyszy tyglowej, izolującej w tym obszarze różne szkła. Szkło zewnętrzne pociąga za sobą strugę szkła wewnętrznego. Obie strugi cylindryczne przesuwają się względem siebie, oddziaływując poprzez siły lepkości. Miejsce tworzenia warstwy kapilarnej pierwszej i następnych, między szkłami jest nieruchome i zdefiniowane układem dysz. Jeśli różnice w lepkościach przyległych strug szkła są zbyt duże, to nie dochodzi do uformowania strugi złożonej i w konsekwencji włókna wielowarstwowego. Struga warstwy o małej lepkości zaczyna dominować w całym przekroju poprzecznym strugi tworzącej włókno. Tworzy się struga jednowarstwowa, jedna następująca po drugiej.

Obszar styku pomiędzy warstwami różnych szkieł tworzących strugi nazywany jest powierzchnią kapilarną. Powierzchnia ta ma szczególne właściwości i zakłada się wobec niej pewne ograniczenia. Równanie definiujące powierzchnię kapilarną jest zależnością równowagi naprężeń wynikających głównie z działania sił powierzchniowych, dynamicznych sił wyciągania i sił grawitacji. Statyczne (i quasi-statyczne) powierzchnie kapilarne mają stałą (lub niewiele zmienną) krzywiznę średnią. Krzywizna średnia jest zdefiniowana jako średnia wszystkich krzywizn hiperpowierzchni. W uproszczeniu jest to H=(km+kM)/2, gdzie km-krzywizna minimalna, kM-krzywizna maksymalna. Powierzchnia kapilarna w przypadku wyciągania światłowodu jest powierzchnią minimalną obejmującą w określonych warunkach daną objętość szkła.

W pewnych warunkach na powierzchni kapilarnej może powstać fala kapilarna. Warunkiem powstania jest dostępny w układzie nadmiar energii powierzchniowej. Powstanie fali kapilarnej wyraża się marszczeniem powierzchni kapilarnej. W normalnych warunkach wyciągania włókna optycznego fala kapilarna jest pomijalna. Jej amplituda jest nanometrowa. Zależność dyspersyjna fali kapilarnej (bez grawitacji) jest następująca:

ω2 = σ|k3|/(ρij), (20)

gdzie ω-częstotliwość kątowa fali kapilarnej, σ-napięcie powierzchniowe, ρi-gęstość szkła cięższego i, ρj-gęstość szkła lżejszego j, k=2π/λ-długość fali kapilarnej. W ogólnym przypadku fala kapilarna podlega wpływowi grawitacji i wzór dyspersyjny zawiera addytywny składnik grawitacyjny o postaci:

ωg2 = |k|Ag, (21)

g - stała grawitacji, A = (ρij)/(ρij) - liczba Atwooda. Wówczas ωc = ω+ωg. Niestabilny rozwój fali kapilarnej może doprowadzić do penetracji jednej warstwy szkła przez drugą. Amplituda penetracji zależy od wielkości czynnika Agt2, gdzie t-czas.

Przekształcone równania dyfuzyjno-konwekcyjne Naviera-Stokesa (N-S) dla warunków kapilary szklanej sformułowano poniżej, zgodnie z oznaczeniami dla cylindrycznego układu wyciągania kapilary przedstawionym na rys.2:

ρ(r22-r12)(vt+vvz-g)=[3µ(r22-r12)vz+ξ(r1+r2)]z (22)

(r12)t+ (r12v)z=(r22)t+ (r22v)z=[por12r12- ξr1r2(r1+r2)]/µ(r22-r12)

0,5(r22-r12)[ρcp(Tt+vTz)-k(Tz)z-σε(Ta4-T4)]=r2h(Ta-T)

gdzie: indeksy dolne t i z oznaczają pochodną danej funkcji względem zmiennej niezależnej reprezentowanej przez indeks, t-czas, z-dystans wzdłuż osi kapilary, r1 i r2 są promieniem wewnętrznym i zewnętrznym tworzonej, w obszarze menisku wypływowego, kapilary, v-prędkość, ρ-gęstość, g-przyspieszenie grawitacyjne, μ-lepkość, po-różnica ciśnień pomiędzy wnętrzem i zewnętrzem kapilary, ξ-napięcie powierzchniowe, cp-pojemność cieplna, T-temperatura, Ta-temperatura zewnętrzna, k-przewodność cieplna, σ- stała Stefana-Bolzmana, ε’-stała materiałowa związana z emisyjnością, h-współczynnik transferu ciepła.



Rys.2. Układ geometryczny i parametry menisku wyciągowego włókna kapilarnego jednowarstwowego i wielowarstwowego. Oznaczenia są analogiczne dla niniejszego rysunku i wzorów N-S dla kapilary. Rysunek nie w skali. rpw-wewnętrzny promień preformy, rpz-zewnętrzny promień preformy, L-długość menisku wypływowego, vf -prędkość wyciągania włóna, vp-prędkość podawania preformy, v(z)-lokalna prędkość wymuszonego wypływu szkła, Δri-grubość lokalnej warstwy szkła. Wymuszenie wpływu masy szkła do pieca jest powodowane przez podawanie preformy o promieniu rp[cm] z prędkością vp[cm/min]. Wymuszenie wypływu masy szkła z pieca jest powodowane przez nawijanie włókna o promieniu rf[µm] na bęben z prędkością vf[m/min]. Zachowany jest bilans masy szkła procesu.



1   ...   13   14   15   16   17   18   19   20   ...   53


©operacji.org 2017
wyślij wiadomość

    Strona główna